

SUR L'ENVIRONNEMENT ET LE DÉVELOPPEMENT

La modélisation des politiques locales de transport

et de leurs interactions avec les autres politiques climatiques

Vincent Viguié (CIRED, Ecole des Ponts ParisTech)

QUELS TYPES DE MODÈLES EXISTENT?

Quels types de modèles existent?

 Tout dépend de la question à laquelle les modèles doivent répondre

- De nombreuses approches/théories
 - Théories sociales
 - > Théories économiques
 - (économie urbaine, économie géographique)
 - > Théories mécanistes
 - (par ex. approche gravitaire)
- De nombreux modèles opérationnels
 - > TRANUS, Urbansim, MEPLAN, sleuth, Molland etc.

Les enjeux

- Un modèle numérique sert à obtenir des chiffres, des cartes etc.
 - > Évolutions futures possibles d'une ville (étalement etc.)
 - ➤ Impacts d'une politique
 - **>** ...
- Un modèle peut toujours être faux
 - ➤ Il est très difficile (même en théorie) de prouver qu'un modèle socioéconomique va faire de bonnes prédictions
 - Exemple des modèles de prévision de croissance économique au niveau national
- Appliquer un modèle peut coûter cher
 - > Il faut du temps
 - > Du personnel qualifié
 - Des données

La complexité des modèles

Des modèles simples ou des modèles complexes

- Parfois, le plus important est de comprendre les ordres de grandeur, les phénomènes importants
 - Car ils peuvent être très différents d'une ville à l'autre!
- ➤ A l'inverse, parfois le plus important est d'avoir des chiffres/cartes précis
 - Dans ce cas, des modèles complexes ou coûteux peuvent être utiles (TRANUS, Urbansim etc.)

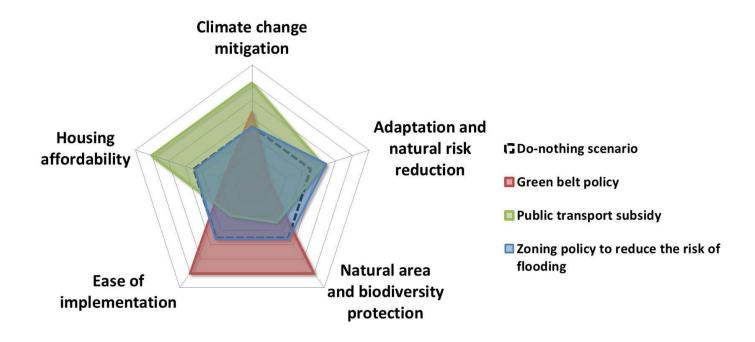
Un choix à faire

- Des chiffres précis = plus d'hypothèses, d'approximations à faire...
- → = difficile de savoir la validité du modèle
- → = Risque de « boîte noire » (= on ne comprend plus très bien le lien entre les entrées du modèle et les simulations)

Le choix optimal dépend beaucoup du contexte et de la question posée

Il est en revanche presque toujours utile d'avoir de bonnes données locales

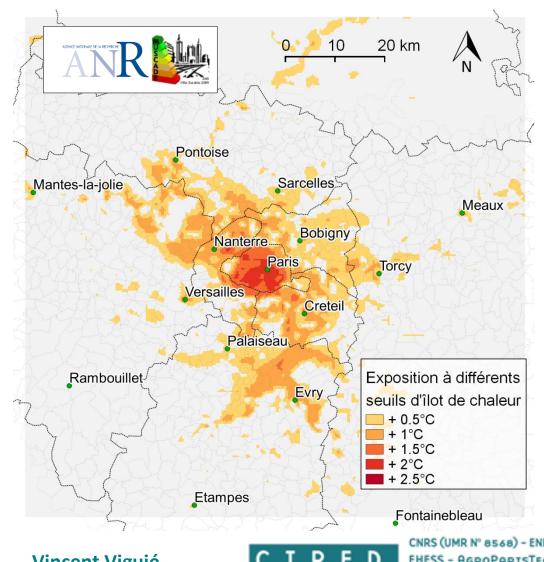
QUELLES INTERACTIONS ENTRE DIFFÉRENTES POLITIQUES LOCALES ?


Quelles interactions entre différentes politiques locales ?

L'évolution des villes se fait de manière très lente

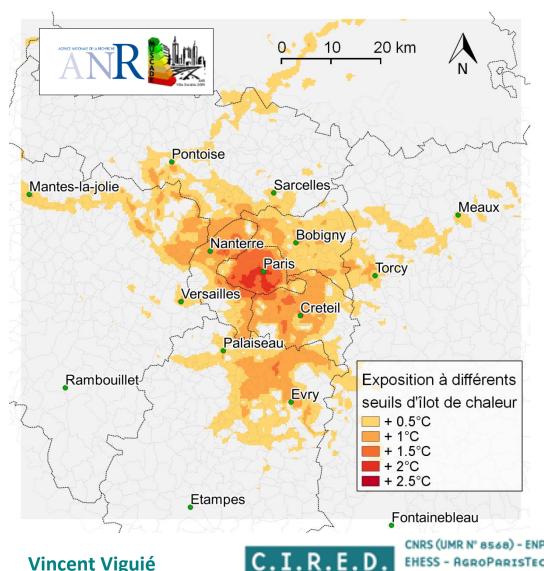
- ➤ Par ex. Il faut des années pour isoler une fraction significative des bâtiments
- ➤ Pour avoir une action sur la forme des villes, il faut encore plus de temps...
- Les technologies évoluent vite, le climat change vite...
 - Attendre le retour d'expérience des autres villes avant d'agir signifie parfois agir trop tard
- Les modèles numériques peuvent aider à analyser l'impact futur probable de politiques faites aujourd'hui

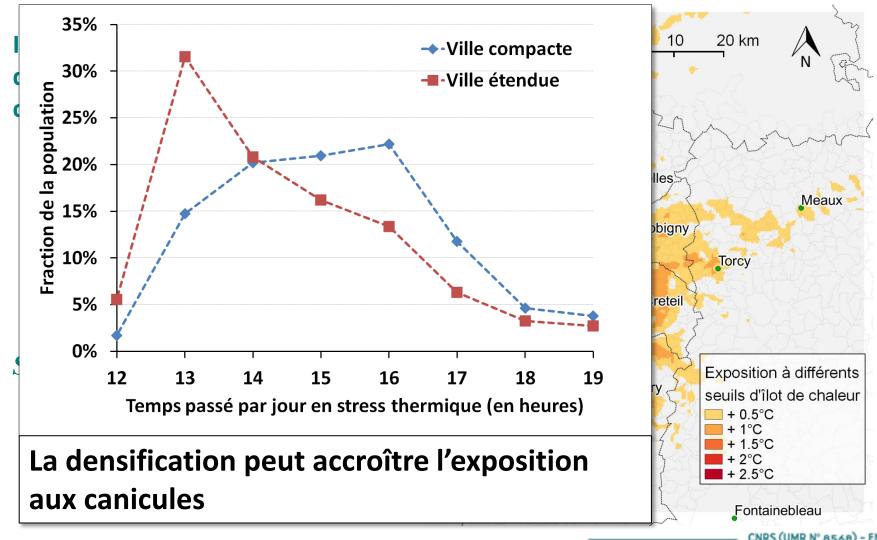
Interactions entre différentes politiques environnementales en Île de France


(Viguie et Hallegatte, 2012)

Interaction entre densification et îlot de chaleur urbain

- Projet ANR MUSCADE
- Projections des températures à Paris l'été (moyenne sur le mois d'août, climat de 2100)


Scénario de ville étalée



Interaction entre densification et îlot de chaleur urbain

- Projet ANR MUSCADE
- Projections des températures à Paris l'été (moyenne sur le mois d'août, climat de 2100)

Scénario de ville densifiée

Conclusion

- Utiliser un modèle numérique complexe est un choix coûteux
 - > D'autant plus que l'on modélise avec une grande précision
 - Une des vertus de l'application d'un modèle est que cela oblige à réunir beaucoup de données et à réfléchir dessus
- Le risque d'avoir des résultats faux est toujours présent
 - > Un recul critique face aux simulations est absolument nécessaire
- Transposer les résultats d'une ville à l'autre n'est pas forcément simple
 - Mais cela peut quand même donner des idées

